

Magnet Applications in Medicine and Spine

July 21-22, 2018

Part 2

Stephen D. Cook, PhD Executive Director

Fellowship of Orthopaedic Researchers 320 Hammond Highway Metairie, Louisiana

Advantages of Magnetic Force Transmission

- Non-contact (force at a distance)
- Strong and compact
- No power requirement
- Efficient signal path of static magnetic fields
- Damping for shock absorption
- 3-D characteristics of attraction/repulsion systems
 - Alignment control
 - Friction reduction

Potential Issues

- Corrosion / toxicity
- Force reduction with distance or mis-alignment
- Environmental interactions
- Brittle
- Exposure to heat

Issues addressed:

- Biocompatible coatings
- Shielding of magnetic fields
- Protection of implanted electronic devices
- Factor of safety in design/application

Pectus Excavatum

Magnetic Mini-Mover Procedure (3MP)

- Internal magnet implanted on sternum
- External magnet in anterior chest wall brace
- Magnetic forces used to move the sternum forward over time
- Phase 1 IDE pilot safety trial
 - 10 patients, ages 8-14 years, severe PSI>3.5
 - No detectable ill effects
 - Pectus severity index improved in early and mid-puberty patients
 - Weld failures of device (3/10, 30%)
- Multi-center safety & efficacy trial
 - 15 patients, 24-months treatment
 - Mixed efficacy based on Haller Index
 - Good satisfaction at one year
 - Device breakage, cables (7/15, 47%)

Magnetic Mini-Mover Procedure for Pectus Excavatum, I, II, III, IV Harrison MR et al (2007, 2010, 2012) and Graves et al (2017) J. Pediatric Surg

Early Onset Scoliosis

Magnetically controlled growing rods (MCGR)

- Expandable growing rod for children
- Works only on the area of deformity
- Rod is expanded externally with a magnet
- Obtain and maintain correction as the child grows

Phenix Rod[™]

- 2005 1st implantations Europe FDA approval on compassionate grounds (70
- worldwide implanted)
- 2012 1st two cases in USA reported by Wick & Konze (AORN Journal)

MAGEC System (NuVasive)

- 2009 CE Mark
- 2012 Earliest results (Cheung et al, Lancet)
- March 2014 FDA 510k approval
- Safe and effective alternative to traditional growth rods
- Reduced number of planned surgeries
- Complications: failure of distraction, implant fracture, metallosis

A Magnetic Approach to Treating Progressive Early-Onset Scoliosis

Magnetic Mini-Mover Procedure

(3MP)

Magnimplant

NdFeB, Ti-encased Ø1.5cm x 0.48 cm thick

1st G

n to back plate Prone to weld failure

ded ste

2nd Generation Titanium cables wrap around

. .m – connect magnet and back plate

Magnet Technology FOR Applications in the Spine

- Spinous process, stenosis
- Cervical traction
- "Dynamic" stabilized fusion
 - Adjacent segment protection
- Deformity correction, scoliosis
- Disc replacement
 - Non-contacting
 - Contacting

Rare Earth Magnets

- Neodymium-Iron-Boron (NdFeB) alloy
- Offers the highest Br and Hci values
- Strongest magnet available up to 52 MGOe
- Susceptible to oxidation due to high iron content
- Use in environments up to 200°C

JMAG-Designer: Electromagnetic Simulation Software

 High-speed, high-precision 3D FEA software used to simulate and optimize outputs of various implant and magnet configurations

Validation of FEA Results Mechanical Testing

Servohydraulic test systems used to measure repulsion forces of magnet configurations and evaluate strength/duration of magnetic implants

Lumbar Spinal Stenosis

Interspinous Process Decompression

- Relieve symptoms of lumbar spinal stenosis
- Minimally invasive procedure
- Alternative to decompression spine surgery,
- such as laminectomy
- Interspinous Process (ISP) Devices or Spacers
 - Implanted between spinous processes to distract or decompress the spine at the level of stenosis
 - Static (non-compressible) or dynamic (compressible)
 - Over 65 ISP devices currently in the market

ion (Vertifle

Magnetically Levitated Spinous Process Implant

- Concept Rare earth magnets inserted between adjacent lumbar spinous processes
 - Repulsion forces of magnets distract and separate vertebral bodies
 - Magnetic distraction increases foraminal height and alleviates nerve root impingement and pain
 - Magnetic force increases as distance between magnets shortens
 - "Dynamic" decompression

Magnetically Levitated ISP Device Design Concepts and Modeling

CAD design ideas in SolidWorks – Solid models

- Export models to FEA software, JMAG

Model using anatomical dimensions and magnet material properties

- N52 grade NdFeB magnets
- Disc shape, thickness (~3-5mm)
- Separation distances

Magnetic FEA modeling (JMAG)

- Force and magnetic flux density results
- Repulsion force (N) using various magnet diameters, separation distances and
- magnet thicknesses
- Determine target distraction loads on spinous process

Cervical Pain / Traction

Cervical Spine Injury or Neck Pain

- Degenerative changes affecting disc, facet joints, or ligaments of spine
- Symptoms include pain, headaches, stiffness, changes in neck ROM or gait, muscle weakness, or tingling sensations

Cervical Traction or Manipulation

- Nonsurgical treatment option: (1) discogenic pain; (2) degenerative disc disease;
 (3) radiculopathies; (4) facet joint syndrome; (5) joint hypomobility; (6) muscle spasms; (7) foraminal stenosis; and (8) post-laminectomy syndromes
- Pneumatic neck pillows, over-door traction at home
- Cervical manipulation/traction therapy

Traction Load and Intradiscal Pressures

Manual Cervical Traction

- Start 8 to 10 lbf, increase by 5-lbf intervals
- ~25 to 40 lbf, not to exceed 45 lbf
- Ideal effect, ~7-10% BW

R ntr ap

- Sustained or Intermittent, 15 to 20 min intervals
- Daily, twice daily, 2-3 times weekly

Effects of Traction on Intradiscal Pressure (IDP)

- Typical resting disc, IDP ≈ 0.6 to 1.2 MPa
- Increased disc compression, IDP ≈ 3.5 MPa (~250%)

lative decreases in discal Pressure with		IDP Change per Pound of Traction (kPa/lb)
olied traction forces	Cripton et al. (2001)	16.7
	Wu et al. (2012)	1.6 – 1.9
	Gudavalli et al. (2013)	1.6 - 7.2

- 10 pound traction load, IDP reduced by 14% to 28%

Internal Magnetic Traction Device for the Cervical Spine

Concept – Array of rare earth magnets placed in cervical vertebrae to produce vertical distraction force across the disc

- Titanium implant or screws encapsulate magnets
- Opposing repulsive magnetic fields provide distraction forces across spine segment
- in foraminal distraction, relief of any disc bulge, and alleviation of nerve root pressure thus reducing pain
- Magnetic forces increase as distance between magnets shortens

- Sustained magnetic separation results

- "Dynamic" levitation or internal traction

Internal Magnetic Traction Device Screw Design Features

Array of 4 Magnetic Screws

- Screw: Ø 5-6 mm X 16-25 mm length
- Magnet: Ø 3-5 mm X 10-20 mm length
- Superior screws 8 to 12 mm apart
- Inferior screws 10 to 20 mm apart
- Diametrically magnetized

Design Features

- Typical cervical screw system
- Ti-6AI-4V alloy body
- Hex/torx drive mechanism
- Flat edge feature to orient magnet pole Magnet fully encased, tip welded

Internal Magnetic Traction Device FEA Modeling of Magnetic Flux

Magnetic Cervical Traction, 5N separation force (range, 2 to 10N)

Magnetic Plate and Screw System "Dynamic" Fusion

- Concept Rare earth magnets in an anterior plate and screw fusion system to generate a compressive force across the fusion site
 - Attraction forces stabilize vertebrae across fusion site
 - "Dynamic" compression
 - Expandable to multiple levels
 - SMF may promote bone growth and enhance fusion mass
 - Repulsion forces at adjacent non-fused segments

Magnetic Plate and Screw System Design Features

Magnetic Screws

- Screw: Ø 4–5 mm X 16–25 mm length
- Magnet: Ø 3-4 mm X 10-20 mm length
- Diametrically magnetized
- Magnet fully encased, tip welded
- Pole orientation indicator
- Plate Design Features
 - Typical anterior plate system
 - Contouring profile to vertebral body
 - Single plate: 2 or 4 screw holes
 - Multi-level plate
 - Round or oval screw holes to allow sliding of screw within plate
 - Provide compression to interbody implant and/or bone graft material

Magnetic Plate and Screw System FEA Modeling of Magnetic Flux

Early Onset Scoliosis (EOS)

- Defined as a curvature of the spine greater than 10 degrees in children from birth to 10 years of age
- High risk of spinal deformity progression
 - Chest cavity malformation
 - Heart problems and impaired lung growth
 - Thoracic insufficiency syndrome (TIS)
- Non-surgical treatments
 - Observation
 - Bracing / Casting
- Surgical procedures
 - Distraction-based implants
 - Magnetically controlled growing rods (MCGR), i.e. MAGEC System
 - Guided growth implants
 - Compression-based implants
 - Fusion

Magnet Technology Abnormal Spinal Curvature EOS and Idiopathic Scoliosis

- Concept Rare earth magnets used to realign and stabilize the spine and prevent further curve progression
 - Magnets housed in locking mechanism attached to head of pedicle screws
 - Magnetic screws placed in pedicles at level of curve, above and below
 - Attraction forces stabilize vertebrae across levels of spine
 - Magnet poles oriented to maintain desired vertical alignment
 - Can be combined with external magnets in a brace

agnetic Attraction Forces

Magnetic Spine Curvature System FEA Modeling of Centering Force Centering Force vs Offset Distance* Simulations of 3-level C-curve 3-Level C-Curve 2cm x 2cm x 2cm magnet 35 - 5cm horizontal separation 30 - 4cm vertical separation 25 Centering Force (N) 20 Centering Force vs Offset Distance Centering force affected by number of magnets per vertebral body - Centering force generated by magnet attraction and desire of magnets to align vertically 30 35 20 25 Offset (mm) *Offset Distance Degree of Curvature agnets per verteral body 10 mm 14 deg

Magnetic Spine Curvature System FEA Modeling of Centering Force

27 deg 37 deg

20 mm

30 mm

Simulation of 5-level C-curve with 10mm (14°) Offset Distances

Magnetic Spine Curvature System FEA Modeling of Centering Force

Direction of Force on Vertebra

Magnetic Spine Curvature System FEA Modeling of Centering Force

Simulation of 5-level Double S-curve with 10mm (14°) Offset Distances

Artificial Disc Replacement

Degenerative disc disease (DDD)

- Most common cause of low back and neck pain
- Replace diseased disc with artificial disc replacement
- Provide pain relief and allow normal motion of spine

- Total disc replacement (TDR), cervical and lumbar
 - Unconstrained or semi-constrained
 - Articulating surface(s)
 - Fixation endplates

Magnets and Total Disc Replacement in the Spine

Concept – Rare earth magnets placed in plates that are fixed to the vertebral endplates and oriented to generate a repulsive force across the disc space. Both non-contacting and contacting designs are possible.

Magnetic Disc Replacement Repulsion Forces

Magnetic Disc Replacement Repulsion Forces

Magnetic Disc Replacement Repulsion Forces

Lateral forces remain close to zero with slightly negative values at higher angle offset

Magnets and Total Disc Replacement in the Spine

Contacting articulation design of an artificial disc replacement with magnets

- Magnets housed in metal fixation plates attached to superior and inferior vertebral endplates
- Magnets repel at the surface articulation and impart a repulsive force on the vertebra
- Repulsive forces reduce contact stresses on the articulating surface of the device
- Reduced wear due to reduction in contact stress

Review: Magnets in Medicine and Spine

- Magnet properties, strengths
- Advantages/disadvantages of magnets and magnetic field exposure
- Clinical uses of magnets Current and Future
 - Diagnostic imaging
 - Potential therapeutic benefit
 - Dentistry, craniofacial applications, joint replacements, bone healing, prosthetic attachment
- Numerous spine applications for use of magnetic technology

THANK YOU