

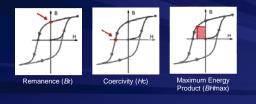
Magnet Applications in Medicine and Spine

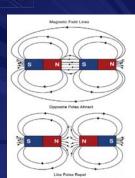
July 21-22, 2018

Part 1

Stephen D. Cook, PhD Executive Director

Fellowship of Orthopaedic Researchers 320 Hammond Highway Metairie, Louisiana

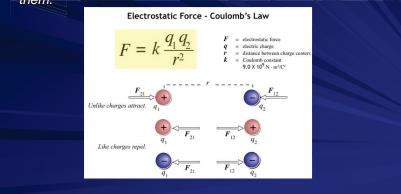

Magnet Basics

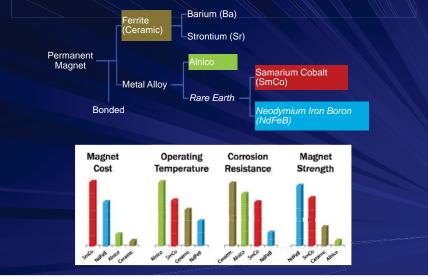

Comparison of Magnetic Materials

DIAMAGNETIC	PARAMAGNETIC	FERROMAGNETIC
1. Diamagnetic substances are those substances which are feebly repelled by a	Paramagnetic substances are those substances which are feebly attracted by a magnet.	Ferromagnetic substances are those substances which are strongly attracted by a magnet.
magnet. Eg. Antimony, Bismuth, Copper, Gold, Silver, Quartz, Mercury, Alcohol, water, Hydrogen, Air, Argon, etc.	Eg. Aluminium, Chromium, Alkali and Alkaline earth metals, Platinum, Oxygen, etc.	Eg. Iron, Cobalt, Nickel, Gadolinium, Dysprosium, etc.
2. When placed in magnetic field, the lines of force tend to avoid the substance.	The lines of force prefer to pass through the substance rather than air.	The lines of force tend to crowd into the specimen.
N S	S N	

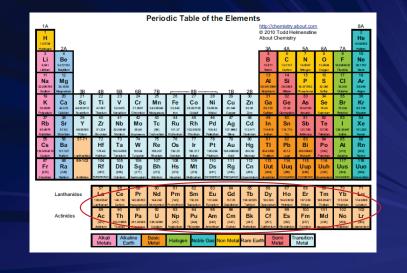
Magnet Basics Magnet and Magnetic Field Properties

- Magnetic Field Strength, or Flux Density (B)
- Magnetizing Force (H)
- B/H Curve
 - Plot of Magnetic Force (H) vs resultant Flux Density (B)
 - Residual Induction, or Remanence (Br)
 - Coercive Force, or Coercivity (Hc)
 - Maximum Energy Product (BH_{max})



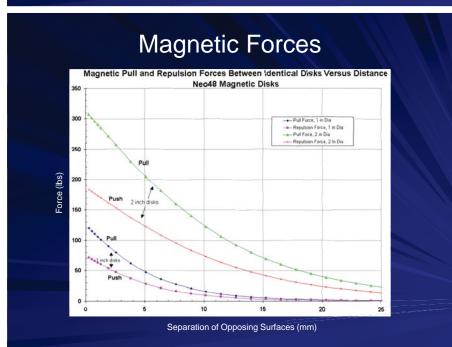

Ω

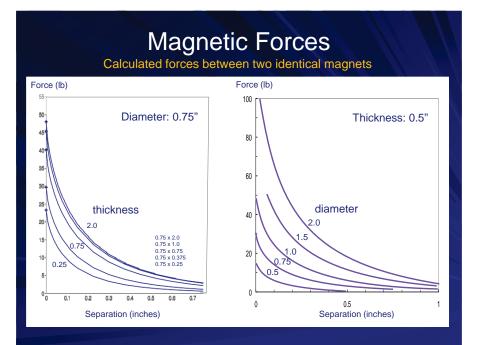
Coulomb's Law of Magnetism


"The force of attraction/repulsion between two magnetic poles is directly proportional to the strength of the poles and inversely proportional to the square of the distance between them."

Permanent Magnetic Materials

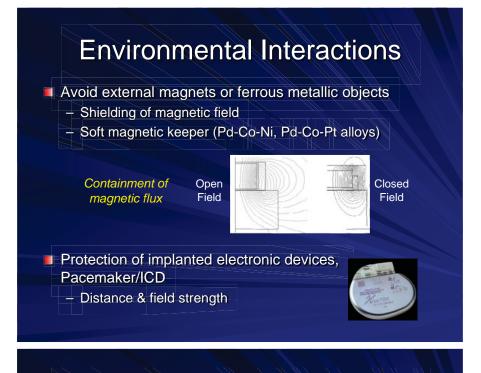
Rare Earth Metals


Neodymium Iron Boron (NdFeB)


- Rare Earth magnet
- Offers the highest Br and Hci values
- Strongest magnet available up to 52 MGOe
- Susceptible to oxidation due to high iron content
- Use in environments up to 200°C

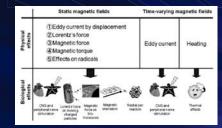
Advantages of Magnetic Force Transmission

- Non-contact (force at a distance)
- Strong and compact
- No power requirement
- Efficient signal path of static magnetic fields
- Damping for shock absorption
- 3-D characteristics of attraction/repulsion systems
 - Alignment control
 - Friction reduction



Potential Issues

- Corrosion / toxicity
- Force reduction with distance or mis-alignment
- Environmental interactions
- Brittle
- Exposure to heat


Corrosion / Toxicity

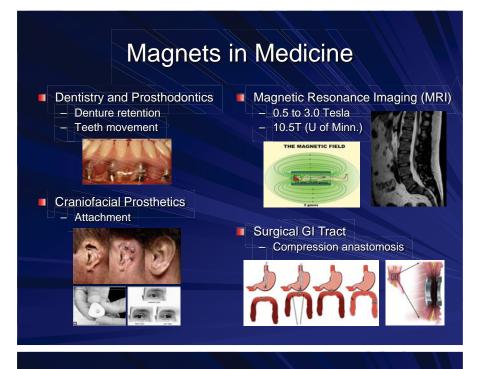
Safety of Static Magnetic Fields

Physical & biological effects of SMFs/EMFs*

High SMF (>3T) exposure in humans:

- Transient temporal sensations caused by subject motion
- No lasting or negative effects on cognitive functions, cardiac function, or body/skin temperature

*Yamaguchi-Sekino, et al. *Magn Reson Med Sci* (2011): Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.


No compelling evidence for long-term health effects of static magnetic fields up to 8 Teslas

"Guidelines on Limits of Exposure to Static Magnetic Fields" (2009) by ICNRP (International Commission on Non Ionizing Radiation Protection)

	Exposure	Magnetic Flux Density Limit		
	Occupational			
2	Head and trunk Limbs	2 T 8 T		
	General Public			
	Any part of body	400 mT		

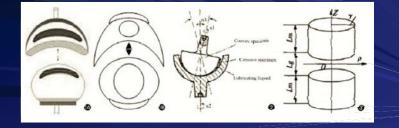
Relative Gauss Measurements

Magnets in Medicine

Effects of SMFs on bone formation and healing#

- Mostly in vitro and in vivo animal studies
- Low to moderate field strengths (4 mT to 100 mT, <1T)
- Exposure duration (15 days to 12 weeks)
- Effects of applied SMF using magnets:
 - Enhanced bone formation and healing
 - Increased BMD
 - Inhibited bone loss in OVX rats
 Faster peri-implant bone formation
- No side effects or adverse reactions

Limited study in humans on SMF effects on bone


- Hypo-magnetic fields (<5µT), i.e. astronauts in deep space
 - High strength fields (>3T), i.e. diagnostic imaging

"Zhang J, et al. Prog Biophysics Mol Biol (2014): The effects of static magnetic fields on bone

Magnets in Orthopaedics

Magnetic Suspension Hip Joint

- Dai & Nie, Chinese Medical Journal, 2010
- Opposing magnets in concave and convex mating implants
- Titanium nitride plating of magnets
- Friction wear tests
- Magnetic poles repel, joint load & friction are reduced

Magnets in Orthopaedics Magnetic Total Hip & Total Shoulder Replacement - Doursounian et al, 1988 and 1998 - Combined Sm-Co magnets & F-17 steel poles in polyacetal ball joint Titanium nitride-coated SS "keeper" in socket/glenoid THA model, 7 ewes TSR, 66yo female cancer patient Good biocompatibility Breakaway force, 40N Good radiographic & functional results at 24 months Femoral fractures (4) **Dislocation** (1) Late subluxation of device Magnets in Orthopaedics Magnetic Elbow Prosthesis - Esformes et al, 1981 Prototype with magnetically constrained axis - Greater stability than non-hinged devices Reduced tensile and rotatory forces on prosthetic fixation Prevent loosening and breakage lating surfs Ulnar component Elbow prosthesis Magnets in Orthopaedics Leg Lengthening / Expandable Rods PRECICE[®] System (NuVasive) JTS[®] Extendible Implant (Stanmore Implants, UK) Adjustable intramedullary nail (magnet/gear box) FDA 510K approvals 2011, 2014 Femur and tibia, limb length Internally implanted magnet/gear box discrepancy External drive unit with rotating <u>ا</u> External Remote Control (ERC) magnetic field

ScienceDaily

Rep and the

Precise non-invasive expansion

Magnetic Coupling & Direct-to-Skeleton Prosthesis Attachment

One in 200 Americans living with a limb loss

- In 2008, ~1.7 million persons...By 2050, estimated 3.6 million
- 82% amputations secondary to dysvascular disease
 40% comorbidity Diabetes mellitus
- Decline in trauma- and cancer-related amputations

Increase in U.S. military amputation rates

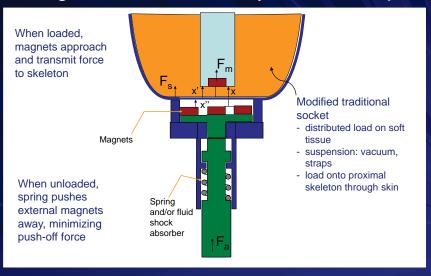
- War-related injuries & major limb amputations
- Return of amputees to service
- High activity levels

Amputation Rates: Percentage of U.S. Battle Injuries*

	Percentage	Number	
American Civil War	12.0%	50,000 +	
World War I	1.7%	2,610	
World War II	1.2%	7,489	
Korean War	1.4%	1,477	
Vietnam Conflict	3.4%	5,283	
Global War on Terrorism [#]	2.6%	-1,600 +	

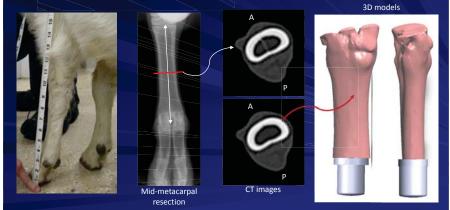
*Statistics for September 2001 to September 2010; CRS Report RS22452 (September 28, 2010). *Isaacson BM et al: IEEE 2011, p2991-2994; CRS Report RL32492 (February 26, 2010).

Direct-to-Skeleton Prosthesis Attachment


Amputees need recovery to normal functions

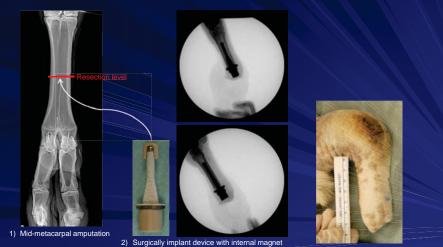
- Walking, running, daily activities
- Benefits of magnetic prosthetic attachment system
 - Reduce load transmission through soft tissues
 - Avoid infections via skin-penetrating anchor devices

Magnetic-Mechanical System Concept

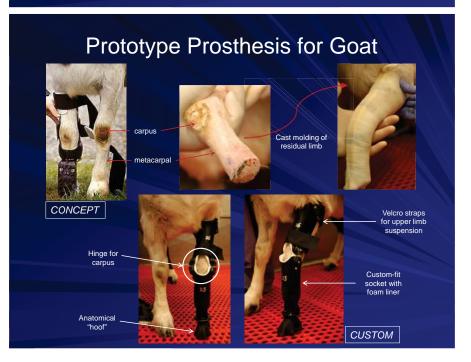


Neodymium-Iron-Boron (Nd-Fe-B)

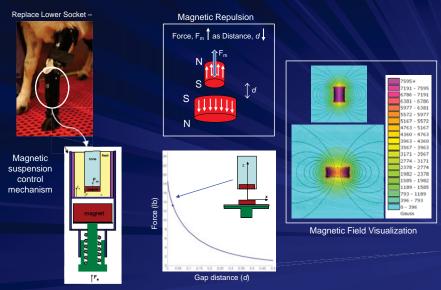
- Rare earth magnetic material
 - Military defense applications, motor design, MagLev train
 - Clinical use in artificial valves, inner ear devices, craniofacial attachment, dentistry
- Strong magnetic properties
 - High retentive capacity
 - High resistance to demagnetization
- Toxic, not biocompatible
 - Low corrosion resistance
 - Needs biocompatible coating
 - I i.e. titanium, titanium nitride, palladium, stainless steel, Teflon, gold

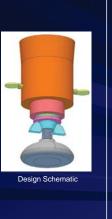

Goat Amputation Model

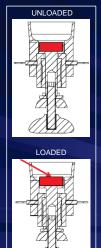
- Anatomical measurements metacarpal bone
- Radiographic and CT imaging studies
- 3D models of goat forelimb



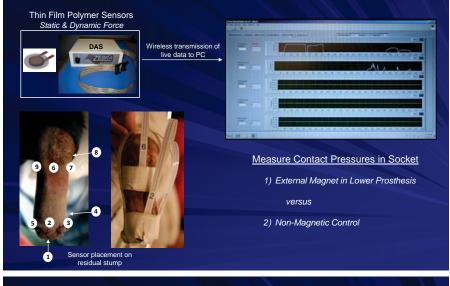
Design of Implantable Magnet System Design Concept for Goat Metacarpal Implant HA-coated Plasma-sprayed Titanium – Bone Fixation Titanium Stem Implant Collar -. Support against Threaded Resected Bone Attachment -Well for magnet; Mechanical seal Nd-Fe-B Magnet Ni-Cu-Ni Coated / Gold Plated Magnet 1/2" Diameter x 5/8" Height PEEK Cap – Magnet Enclosure Implantable Device – 2 Sizes: Small & Large


Surgical Amputation & Implantation

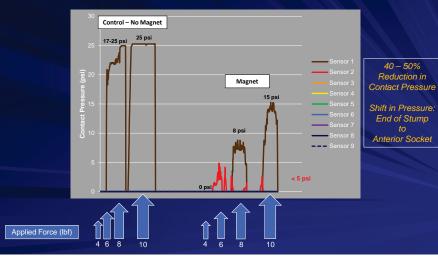

3) Healing period - 2 to 4 Weeks

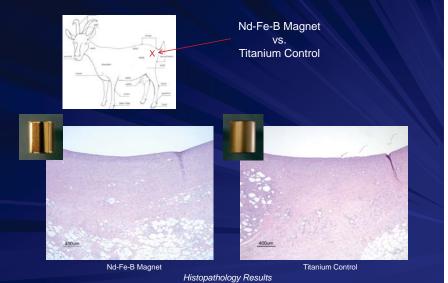


Prosthesis With Magnetic Suspension

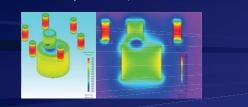


Fabricated Prosthesis


Prosthesis With Magnetic Suspension


Instrumented Prosthesis Measurement of Dynamic Contact Pressures

Load Reduction & Re-Distribution of Pressure Effects of Magnet


Biocompatibility Tissue Test

Current Prosthetic Design

 U.S. Patent 9,707,105 "Magnetic Prosthetic Implants and Methods Thereof" (Issued Jul. 18, 2017)

- U.S. Patent 15/707,937
 - Internal implant magnet
 - Adjustable pilon
 - Housing for larger lower magnetsArrays of magnets incorporated into
 - prosthesis socket
 - Magnetic modeling analysis of magnetic flux density and forces (JMAG, Powersys-Solutions)

In Vitro Testing of Magnetic Arrays

Increased stability

Dynamic levitation

Tekscan Pressure

Reduced peak pressures on limb Enhanced distribution of contact stresses

Average Tip Pressure Across Trials

Mock Limb Prosthetic Cup

Review: Magnets in Medicine

- Magnet properties, strengths
- Advantages/disadvantages of magnets and
 - magnetic field exposure
- Clinical uses of magnets
 - Diagnostic imaging
 - Potential therapeutic benefit
 - Dentistry, craniofacial applications, joint replacements, bone healing, prosthetic attachment
 - Current and future spine applications:

Magnet Applications in Medicine and Spine, Part 2 Sunday, July 22 8:00 – 9:00am