Pseudomeningocele and CSF leak following posterior fossa and posterolateral skull base surgeries: Development of a predictive model and risk score

Travis Atchley, MD — Evan Gross, BS — Yasaman Alam, MD — Dagoberto Estevez-Ordonez, MD Benjamin Saccomano, MD — Jordan George, BS — Nicholas Laskay, MD — Philip Schmalz, MD Kristen Riley, MD — Winfield Fisher III, MD

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

2

Disclosure

- No disclosures
- No conflicts of interest

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

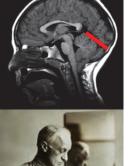
UAB Department of Neurosurgery

O UAB. All Rights Reserved.

Background

3

 Indications for posterolateral skull base and posterior fossa procedures:


- Tumors
- Cysts
- Aneurysms
- Nerve compression
- Congenital malformations
- Arteriovenous malformation
- Cranial nerve compression

THE UNIVERSITY OF

Background

- Incidence of post-op supratentorial CSF leaks: 1-11% [1]
- Incidence of post-op infratentorial CSF leaks: 13-35% [2,3]

 "CSF leaks vary so much in degree and cause that each is a special problem unto itself."

- Harvey Cushing, 1909 [4]

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

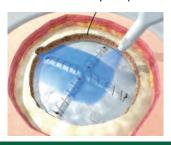
O UAB. All Rights Received.

Background

5

- CSF leak associated with:
 - Meningitis / encephalitis
 - Subdural hematoma
 - Pneumocephalus
 - Need for revision
 - Prolonged hospital stay

Case courtesy of Radiopaedia.org Radiopaedia ID: 11828


THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

LIAR As Pinter Recovery

Background

- Techniques for preventing CSF leak:
 - Use of dural sealants
 - Primary closure vs fat grafting vs synthetics
 - Autologous pericranium or fascia
 - · Bone flap replacement vs bone substitute

- Identify risk factors for CSF-related complications following posterior fossa and skull base procedures
- Develop a risk score that predicts whether a patient will develop postoperative CSF-related complications

THE UNIVERSITY OF

UAB Department of Neurosurgery

UAB. All Rights Received.

Methods – Study design

8

- Single-institution retrospective review
- Posterolateral skull base or posterior fossa procedures
- January 2016 to January 2020
- Excluded:
 - Procedures without intracranial components
 - Procedures including nasal endoscopy
 - Anterior fossa procedures
 - Surgical indication for spontaneous CSF leak
 - ENT-only procedures

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

UAB. All Rights Reserved

9

Methods – Outcome variable

- YES or NO, did the patient develop a post-operative CSF-related complication (POCC)?
- Inclusion criteria for POCC:
 - Pseudomeningocele (fluid on MRI/CT > 48 hours post-op)
 - Any evidence of CSF drainage
 - Incisional leak
- Exclusion criteria:
 - Wound infections

Results

THE UNIVERSITY OF

UAB Department of Neurosurgery

UAB. All Rights Received.

POCC characteristics

11

- ➤ Incidence of POCC = 115 out of 450 patients (25.6%)
- ➤ **Median time to POCC** = 22 days (IQR: 13–47 days)

Table 1. Management of POCC

POCC management	Count (n=115)
Conservative management	34 (29.6%)
Wound revision	15 (13,0%)
Bedside aspiration	10 (8.7%)
Bedside aspiration + VP shunt	1 (0.9%)
External ventricular drain (EVD)	7 (6.1%)
EVD + VP shunt	42 (36.5%)
VP shunt alone	6 (5.2%)

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

LIAR As Pinter Recovery

Table 2. Descriptive statistics

Demographics & Perioperative factors	No CSF-related complications (n=335)	CSF-related complications (n=115)
Demographics		
Mean age in years	55 (SD: 15.6)	47 (SD: 15.3)
Female sex	191 (57%)	67 (58%)
BMI	30.0 (SD: 7.9)	32.0 (SD: 8.2)
Diabetes mellitus	57 (17%)	16 (14%)
Tobacco use	72 (22%)	36 (31%)
History of remote radiation	52 (16%)	13 (11%)
Preoperative management		
Pre-op CSF diversion	30 (9%)	14 (12%)
Pre-op steroid use	59 (18%)	36 (31%)
Pre-op radiation	7 (2%)	5 (4%)
Surgical approach		
Suboccipital	105 (31%)	66 (57%)
Retrosigmoid	98 (29%)	15 (13%)
Translabyrinthine	67 (20%)	5 (4%)
Transpetrosal	40 (12%)	7 (6%)
Transmastoid	8 (2%)	9 (8%)
Far lateral/transcondylar	6 (2%)	9 (8%)

Table 2. Descriptive statistics (continued)

No CSF-related complications (n=335)	CSF-related complications (n=115)
168 (50%)	55 (48%)
94 (28%)	21 (18%)
41 (12%)	23 (20%)
24 (7%)	6 (5%)
8 (2%)	10 (9%)
196 (59%)	36 (31%)
33 (10%)	23 (20%)
38 (11%)	9 (8%)
68 (20%)	47 (41%)
292 (87%)	104 (90%)
11.6 (SD: 9.9)	15.8 (S: 11.1)
53 (16%)	49 (43%)
39 (12%)	28 (24%)
14 (4%)	21 (18%)
69 (21%)	32 (28%)
	complications (n=335) 168 (50%) 94 (28%) 41 (12%) 24 (7%) 8 (2%) 196 (59%) 33 (10%) 38 (11%) 68 (20%) 292 (87%) 11.6 (SD: 9.9) 53 (16%) 39 (12%) 14 (4%)

THE UNIVERSITY OF

UAB Department of Neurosurgery

C. LIAD. All Dieble Berlinsel

Table 3. Univariate analysis

14

Demographic and pre-op variables	Odds ratio for CSF-related complication (95% CI)	p-value
Age (reference < 40)		
40-54 years	0.74 (0.43-1.27)	0.28
55-64 years	0.41 (0.22-0.79)	0.007
≥ 65 years	0.32 (0.17-8.43)	0.001
Female sex	1.05 (0.70-1.16)	0.82
ВМІ		
Underweight	1.74 (0.42-7.25)	0.45
Obese	1.58 (0.88-2.85)	0.12
Morbidly obese	3.15 (1.46-6.75)	0.003
Remote radiation	0.69 (0.36-1.33)	0.27
Diabetes mellitus	0.80 (0.44-1.45)	0.46
Tobacco use	1.65 (1.03-2.66)	0.036
Pre-op CSF diversion	0.71 (0.36-1.39)	0.32
Pre-op steroid use	2.15 (1.32-3.49)	0.02
Pre-op radiation	2.12 (0.66-6.84)	0.20
Tumor volume in cm ³	1.01 (0.99-1.03)	0.058

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

O UAB. All Rights Reserved.

Table 3. Univariate analysis (continued)

Intra-op and post-op variables	Odds ratio for CSF-related complication (95% CI)	p-value
Suboccipital approach	2.75 (1.78-4.24)	< 0.001
Lesion location		
Posterior fossa	0.74 (0.18-3.04)	0.68
Skull base	0.57 (0.14-2.40)	0.44
Ventricular violation	1.82 (0.95-3.40)	0.06
Dural repair		
Pericranium/fascia	0.26 (0.10-0.70)	0.007
Synthetic duraplasty	0.45 (0.16-1.30)	0.14
Fat graft	0.18 (0.06-0.51)	0.001
Combination	0.20 (0.06-0.73)	0.014
Use of bone substitute	0.44 (0.28-0.69)	< 0.001
Post-op steroid use	1.39 (0.69-2.80)	0.35
Post-op steroid duration	1.04 (1.02-1.07)	< 0.001
Post-op CSF diversion	3.95 (2.46-6.33)	< 0.001
Post-op CSF diversion duration		
1–7 days	3,16 (1,81-5.51)	< 0,001
> 7 days	6,43 (3.10-13.31)	< 0.001
Post-op chemo/radiation	1.49 (0.91-2.42)	0.11

Selecting variables for a multivariable model

- Model 1: clinical suspicion (literature/anecdotal)
- \triangleright Model 2: univariate <u>odds ratios</u> (≤ 0.5 or ≥ 2.0)
- > Model 3: univariate odds ratios AND <u>p-values</u> (≤ 0.10)

THE UNIVERSITY OF

UAB Department of Neurosurgery

UAB. All Rights Received.

Variables included in each multivariable model

Model 1 (a priori)	
BMI	p.
Tob	acco use
Dial	oetes
Нх	of remote cranial radiation
Pre-	op cranial radiation
Pre-	op steroid use
Lesi	on location
Dur	al repair technique
Use	of bone substitute
Pos	t-op steroid duration
_	
_	
_	
_	

Model 2 (odds ratios)
BMI
Tobacco use
Diabetes
Hx of remote cranial radiation
Pre-op cranial radiation
Pre-op steroid use
Lesion location
Dural repair technique
Use of bone substitute
Post-op steroid duration
Age
Suboccipital approach
Post-op CSF diversion
_

Model 3 (OR + p-value)
BMI
Tobacco use
Diabetes
Hx of remote cranial radiation
Pre-op cranial radiation
Pre-op steroid use
Lesion location
Dural repair technique
Use of bone substitute
Post-op steroid duration
Age
Suboccipital approach
Post-op CSF diversion
Ventricular violation

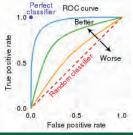
THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

LIAR As Pinter Recovered

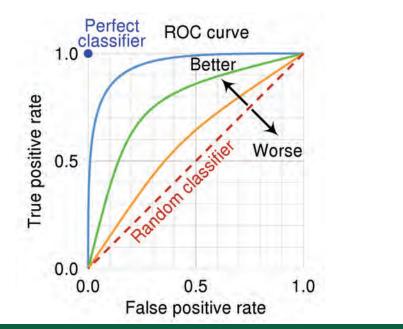
18

Model 1 (a priori)


Model 2 (odds ratios)

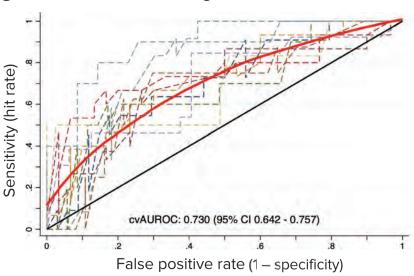
Model 3 (OR + p-value)

How to choose?



Receiver operating characteristic (ROC) curves!

THE UNIVERSITY OF ALAEAMA AT BIRMINGHAN

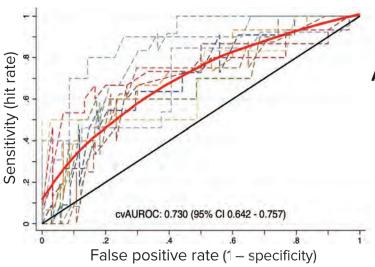

UAB Department of Neurosurgery

O UAB. All Rights Receive

20

19

Figure 1. Cross-validating each multivariable model


THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

LIAR As Pinter Recovery

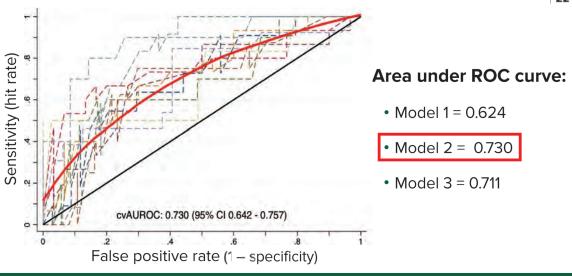
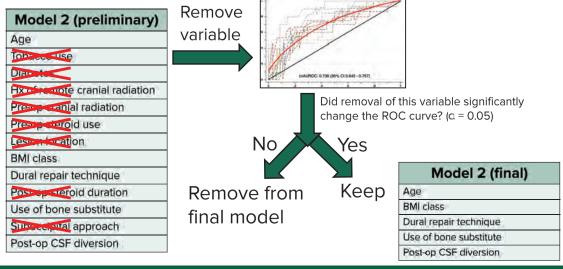

21

Figure 1. Cross-validating each multivariable model

Area under ROC curve:

- Model 1 = 0.624
- Model 2 = 0.730
- Model 3 = 0.711

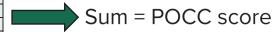

Table 4. Preliminary variables for predictive model

UAB Department of Neurosurgery

23 Odds ratio (95% CI) Variable p-value **Protective** 0.65 (0.43-0.97) Age > 55 years 0.033 factor Risk BMI > 30 1.61 (1.10-2.34) 0.013 Tobacco use 1.26 (0.84-1.88) 0.256 factor Diabetes 0.71 (0.41-1.22) 0.217 History of remote radiation 0.98 (0.56-1.70) 0.931 Pre-op radiation: 1.00 (0.35-2.85) 0.997 1.06 (0.65-1.72) Pre-op steroid use 0.843 Lesion location Posterior fossa 1.81 (0.56-5.87) 0.320 Skull base 1.53 (0.89-2.63) 0.123 0.636 Suboccipital approach Dural repair technique Pericranium/fascia 0.40 (0.17-0.97) 0.044 etic duraplasty 0.36 (0.14-0.92) 0.033 **Protective** Fat graft 0.31 (0.11-0.84) 0.022 factor 0.034 Combination 0.29 (0.09-0.91) Use of bone substitute 0.54 (0.33-0.90) Post-op steroid duration 0.843 1-5 days 0.89 (0.29-2.72) 0.513 > 5 days 1.23 (0.67-2.26) Post-up CSF diversion Risk 1-7 days 1.87 (1.13-3.10) < 0.001 factor > 7 days 3.38 (1.78-6.41) < 0.001 THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Simplifying model through backwards elimination

UAB Department of Neurosurgery



THE UNIVERSITY OF

POCC score components	Points assigned
Age	
≥ 55 years	0
< 55 years	+1
BMI class	
Underweight	+1
Healthy	0
Obese	+1
Morbidly obese	+2
Dural repair technique	
Non-primary closure	0
Primary closure	+2
Use of bone substitute	
Yes	0
No	+1
Post-op CSF diversion	
None	0
1–7 days	+1
>7 days	+3

"Points" derived from coefficients of logistic equation (b_x) :

$$\log\left(\frac{y}{1-y}\right) = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + \dots + b_n X_n$$

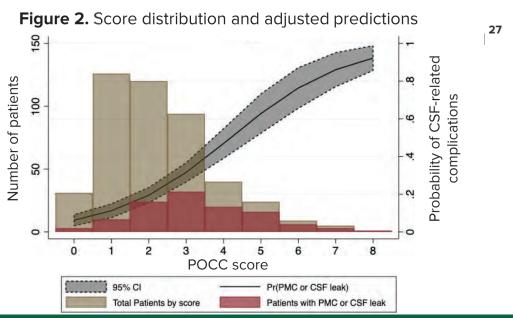
THE UNIVERSITY OF

UAB Department of Neurosurgery

UAB. All Rights Reserved

Table 6. Probability of CSF-related complications for a given POCC score

26


POCC total score	Probability of CSF-related complication (95% CI)
0	6.2% (3.2 – 9.1%)
1	11.2% (7.5 – 14.9%)
2	19.4% (15.4 – 23.5%)
3	31.6% (26.5 – 36.7%)
4	46.9% (39.0 – 54.8%)
5	62.8% (52.4 – 73.2%)
6	76.4% (65.6 – 87.1%)
7	86.1% (77.0 – 95.1%)
8	92.2% (85.6 – 98.8%)
9	Unknown*

*No patients in our study had a POCC score > 8

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

O LIAR At Pinter Receive

- ➢ Our model correctly predicts whether a patient will develop CSF-related complications in 77% of cases
- ➤ Sensitivity = 22.6% → should not be used for screening patients with low risk of CSF leak
- ➤ Specificity = 96.1% → reliably rules in CSF leak in patients with high POCC score

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

UAB. All Rights Reser

Conclusions

29

- Protective factors for POCC include:
 - Age > 55 years
 - Non-primary dural repair
 - · Use of bone substitute
- Risk factors for POCC include:
 - BMI > 30
 - Use of post-op CSF diversion (correlation, not causation)
- We created the first POCC predictive scoring system:
 - Low sensitivity (22.6%)
 - High specificity (96.1%)

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

UAB. All Rights Reserved.

So what?

- To reduce the risk of POCC, consider dural grafts rather than primary closure alone
- Be aware of risk/protective factors for POCC following skull base procedures (age, BMI, post-op CSF diversion)
- Have suspicion for CSF leak in patients with a high POCC score (specificity = 96%)
 - Adjust follow-up timing accordingly

- 1. Single-institution → External validity?
- 2. Limited number of POCC (n=115)
- 3. Multiple surgical indications
- 4. Multiple surgeons → Internal validity?

Future directions

THE UNIVERSITY OF

UAB Department of Neurosurgery

UAB. All Rights Received

Acknowledgements

32

Thank you to **UAB's Center for Clinical and Translational Science** and their team for reviewing our methodology, validation of logistic regression models, and derivation of the integer-based risk score.

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

UAB Department of Neurosurgery

O UAB. All Rights Reserved.

References

- Coucke B, Van Gerven L, De Vleeschouwer S, Van Calenbergh F, van Loon J, Theys T. The incidence of postoperative cerebrospinal fluid leakage after elective cranial surgery: a systematic review. Neurosurg Rev. 2022;45(3):1827-1845. doi:10.1007/s10143-021-01641-y
- 2. Sastry RA, Walek K, Leary OP, et al. Incidence, Characteristics, and Outcomes of Pseudomeningocele and Cerebrospinal Fluid Fistula after Posterior Fossa Surgery. *World Neurosurg*. 2022;164:e1094-e1102. doi:10.1016/j.wneu.2022.05.102 Asdf
- Grotenhuis JA. Costs of postoperative cerebrospinal fluid leakage: 1-year, retrospective analysis of 412 consecutive nontrauma cases. Surg Neurol. 2005;64(6):490-493. doi:10.1016/j.surneu.2005.03.041
- 4. Fulton JF. Harvey Cushing: a Bibliography. Springfield, Illinois: Charles C Thomas, 1946.
- Chiari I MRI → Elster AD, Chen MY. Chiari I Malformations: clinical and radiologic reappraisal. Radiology. 1992;183(2):347-353. doi:10.1148/radiology.183.2.1561334

Questions?

UAB Department of Neurosurgery

O UAB. All Rights Reserved.